
Example Premium Report
Security Assessment Report

PREPARED BY

ABC
REPORTING PERIOD

Q1 · 1 Jan – 31 Mar

Contents

Executive Summary 3

Findings Overview 4

Detailed Findings 5

Appendix 7

Security Assessment Page 2

Acme corp (add your own footer text) 2 of 18

Executive Summary

SECURITY SCORE

0
/ 100

Wet Paper Bag

RISK LEVEL

High Risk
Poor security posture.
Critical vulnerabilities

present.

TOTAL ISSUES

41
11C 4H 21M 5L

Security Assessment Page 3

Acme corp (add your own footer text) 3 of 18

CATASTROPHIC SECURITY BREACH DETECTED

IMMEDIATE ACTION REQUIRED - PRODUCTION ENVIRONMENT COMPROMISED

• /.env exposed with 2 secrets (1 Possible AWS Access Key ID, 1 Possible Generic Secret Key) -
immediate production takeover risk

This exposure enables complete infrastructure takeover. Attackers can access databases, cloud
accounts, payment systems, and customer data. Revenue loss, regulatory fines (GDPR/CCPA),
customer lawsuits, and permanent reputation damage are imminent.

Findings Breakdown

CRITICAL

11
HIGH

4
MEDIUM

21
LOW

5

This example premium report identified a total of 41 potential issues across multiple categories. The most

critical areas requiring attention are highlighted in the sections below.

Security Assessment Page 4

Acme corp (add your own footer text) 4 of 18

Findings Overview

Exposed Configuration Files (WITH SECRETS) 1 CRITICAL

Insecure Cookies 2 HIGH

Storage Security Issues 2 HIGH

Known Vulnerabilities (2 technologies) 5 MEDIUM

Security Assessment Page 5

Acme corp (add your own footer text) 5 of 18

Detailed Findings & Remediation

Exposed Configuration Files

Business Impact

This security finding represents a risk to business operations and data security.

Financial Risk:

Potential for unauthorized access or data exposure.

A security gap that reduces overall defense posture.

What This Means

Configuration files like .env, .git/config, and cloud credentials are publicly accessible on your web server. These files

often contain database passwords, API keys, and other sensitive credentials.

Attackers routinely scan for these files using automated tools. Once found, credentials can be used to access

databases, cloud accounts, and internal systems within minutes.

.env files are particularly dangerous as they often contain complete application configuration including all API keys,

database credentials, and secret tokens.

Potential Risks

Complete infrastructure takeover

Database access and data theft

Cloud account compromise

Ransomware deployment

Cryptocurrency mining on your infrastructure

Total business compromise

Security Assessment Page 6

Acme corp (add your own footer text) 6 of 18

Identified Instances (1)

1. /.env
Type: Environment File | Severity: CRITICAL

CATASTROPHIC EXPOSURE

This file contains 2 exposed secrets: 1 Possible AWS Access Key ID, 1 Possible Generic Secret Key

IMMEDIATE ACTION REQUIRED: This exposure enables complete production infrastructure takeover. Attackers can access
databases, cloud accounts, payment systems, and customer data within minutes.

Impact: IMMEDIATE BUSINESS RISK: This file typically contains database passwords, API keys, payment gateway credentials
(Stripe/PayPal), and authentication secrets. Attackers gain complete access to your infrastructure, customer data, payment
systems, and third-party services. Expected impact: complete data breach, unauthorized charges, regulatory fines (GDPR/CCPA),
customer lawsuits, and permanent reputation damage. Average breach cost: $4.45M (IBM 2023).

Remediation: Remove .env files from web root. Use server-side environment variables. Add .env to .gitignore. Block access
via .htaccess or nginx config.

Security Assessment Page 7

Acme corp (add your own footer text) 7 of 18

How to Fix:

Immediate Actions:

1. Block access to sensitive files immediately

2. Rotate ALL credentials found in exposed files

3. Check access logs for previous downloads

4. Audit systems for unauthorized access

Blocking Files:

Nginx:
location ~ /\. {
deny all;
}

Apache (.htaccess):
<FilesMatch "^\.(env|git|htaccess|htpasswd)">
Order allow,deny
Deny from all
</FilesMatch>

Prevention:

1. Never store .env files in web root

2. Add sensitive files to .gitignore

3. Use environment variables on server

4. Regular security scans

Security Assessment Page 8

Acme corp (add your own footer text) 8 of 18

Code Examples:

// Nginx - Block all dot files:
location ~ /\. {
 deny all;
 return 404;
}

// Apache - Block sensitive files:
<FilesMatch "\.(env|config|sql|bak|log)$">
 Order allow,deny
 Deny from all
</FilesMatch>

// .gitignore - Prevent accidental commits:
.env
.env.local
.env.production
*.pem
*.key

Security Assessment Page 9

Acme corp (add your own footer text) 9 of 18

Insecure Cookies

Business Impact

This security finding represents a risk to business operations and data security.

Financial Risk:

Potential for unauthorized access or data exposure.

A security gap that reduces overall defense posture.

What This Means

Cookies containing sensitive data (session tokens, authentication credentials) are missing important security flags

that protect them from theft and manipulation.

The HttpOnly flag prevents JavaScript from accessing the cookie, protecting against XSS attacks. The Secure flag

ensures cookies are only sent over HTTPS. The SameSite flag helps prevent CSRF attacks.

Missing these flags allows attackers to steal session cookies via XSS attacks, intercept them over unencrypted

connections, or use them in cross-site request forgery attacks.

Potential Risks

Session hijacking via XSS attacks

Cookie theft through network interception

Cross-site request forgery (CSRF)

Account takeover and impersonation

Data theft and unauthorized access

Compliance violations (PCI-DSS, GDPR)

Identified Instances (2)

1. Possible not-httponly

Security Assessment Page 10

Acme corp (add your own footer text) 10 of 18

2. Possible not-httponly

Security Assessment Page 11

Acme corp (add your own footer text) 11 of 18

How to Fix:

Essential Cookie Security Flags:

1. HttpOnly: Prevents JavaScript access
Set-Cookie: session=abc123; HttpOnly

2. Secure: Only send over HTTPS
Set-Cookie: session=abc123; Secure

3. SameSite: Prevent CSRF attacks
Set-Cookie: session=abc123; SameSite=Strict

Complete Example:
Set-Cookie: session=abc123; HttpOnly; Secure; SameSite=Strict; Path=/; Max-Age=3600

Implementation:

1. Audit all cookies set by your application

2. Add HttpOnly to ALL session/auth cookies

3. Add Secure flag (requires HTTPS)

4. Add SameSite=Strict or Lax

5. Set appropriate expiration

Security Assessment Page 12

Acme corp (add your own footer text) 12 of 18

Code Examples:

// Express.js example:
res.cookie("session", token, {
 httpOnly: true,
 secure: process.env.NODE_ENV === "production",
 sameSite: "strict",
 maxAge: 3600000 // 1 hour
});

// PHP example:
setcookie("session", $token, [
 "expires" => time() + 3600,
 "path" => "/",
 "secure" => true,
 "httponly" => true,
 "samesite" => "Strict"
]);

// Nginx header:
add_header Set-Cookie "session=$token; HttpOnly; Secure; SameSite=Strict";

Security Assessment Page 13

Acme corp (add your own footer text) 13 of 18

Storage Security Issues

Business Impact

This security finding represents a risk to business operations and data security.

Financial Risk:

Potential for unauthorized access or data exposure.

A security gap that reduces overall defense posture.

What This Means

Sensitive data stored in browser localStorage or sessionStorage is vulnerable to XSS attacks. Unlike cookies with

HttpOnly flag, JavaScript storage is always accessible to scripts.

localStorage persists indefinitely and survives browser restarts, while sessionStorage lasts until the tab is closed.

Both are vulnerable if any XSS vulnerability exists on the page.

Storing authentication tokens, API keys, personal data, or other sensitive information in browser storage creates

significant security risks.

Potential Risks

Token theft via XSS attacks

Persistent data exposure

Session hijacking

Personal data leakage

API key exposure

Privacy violations

Identified Instances (2)

1. Sensitive LocalStorage Item (JWT Token)

Security Assessment Page 14

Acme corp (add your own footer text) 14 of 18

localStorage: user_token

localStorage.getItem('user_token'):
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkFjbWUgVXNlciIsImlhdCI6MTU...

2. Sensitive SessionStorage Item (Sensitive Data)
sessionStorage: api_key

sessionStorage.getItem('api_key'):
some_session_key_123

Security Assessment Page 15

Acme corp (add your own footer text) 15 of 18

How to Fix:

Best Practices:

1. Don't store sensitive data: Never put tokens, passwords, or PII in localStorage

2. Use httpOnly cookies: For authentication tokens when possible

3. Short-lived tokens: If you must use storage, use short expiration

4. Encrypt data: Encrypt before storing (adds complexity)

5. Implement CSP: Strong Content Security Policy prevents XSS

Migration Steps:

1. Identify sensitive data in storage

2. Move authentication to httpOnly cookies

3. Clear existing storage on login

4. Update token refresh logic

Code Examples:

// BAD - Token in localStorage:
localStorage.setItem("authToken", token);
const token = localStorage.getItem("authToken");

// GOOD - Use httpOnly cookie instead:
// Server sets cookie on login:
res.cookie("authToken", token, {
 httpOnly: true,
 secure: true,
 sameSite: "strict"
});

// Client makes authenticated requests:
fetch("/api/data", {
 credentials: "include" // Sends cookies automatically
});

// If storage is unavoidable, use sessionStorage:
sessionStorage.setItem("tempData", data); // Cleared on tab close

Security Assessment Page 16

Acme corp (add your own footer text) 16 of 18

Known Vulnerabilities (CVEs)

The following Common Vulnerabilities and Exposures (CVEs) were identified in the software components used by
this application.

jQuery 1.8.3

CVE IDENTIFIER SEVERITY CVSS DESCRIPTION

CVE-2020-11022 MEDIUM 6.9 In jQuery versions greater than or equal to 1.2 and before 3.5.0,
passing HTML from untrusted sources - even after sanitizing it -
to one of jQuery's ...

CVE-2020-11023 MEDIUM 6.9 In jQuery versions greater than or equal to 1.0.3 and before 3.5.0,
passing HTML containing <option> elements from untrusted
sources - even after sani...

WordPress 5.8.2

CVE IDENTIFIER SEVERITY CVSS DESCRIPTION

CVE-2022-43497 MEDIUM 6.1 Cross-site scripting vulnerability in WordPress versions prior to
6.0.3 allows a remote unauthenticated attacker to inject an
arbitrary script. The de...

CVE-2022-43500 MEDIUM 6.1 Cross-site scripting vulnerability in WordPress versions prior to
6.0.3 allows a remote unauthenticated attacker to inject an
arbitrary script. The de...

CVE-2022-43504 MEDIUM 5.3 Improper authentication vulnerability in WordPress versions prior
to 6.0.3 allows a remote unauthenticated attacker to obtain the
email address of the...

Security Assessment Page 17

Acme corp (add your own footer text) 17 of 18

Appendix

Technologies Detected

Apache HTTP Server (v2.4.52)
cdnjs
core-js (v3.19.0)
Google Tag Manager
jQuery (v1.8.3)

jQuery CDN
Ubuntu
WordPress (v5.8.2)
PHP
MySQL

Scan Information

Scanner Version 1.5.12

Scan Date 1/30/2026, 11:48:17 AM

Scan Duration 5.91s

Target URL http://virtualfishingcoach.com/

Disclaimer

This security assessment report is provided for informational purposes only. Automated scanning tools may produce
false positives or miss certain vulnerabilities. The information provided should be independently verified and used in
conjunction with manual security testing. ABC makes no warranties regarding the accuracy or completeness of this
report. Use of this report is at your own risk.

Security Assessment Page 18

Acme corp (add your own footer text) 18 of 18

