Example Premium Report

Security Assessment Report

Security Assessment Page 2

Contents

Executive Summary 3
Findings Overview 4
Detailed Findings 5
Appendix 7

Acme corp (add your own footer text) 20f18

Security Assessment Page 3
Executive Summary
SECURITY SCORE RISK LEVEL TOTAL ISSUES
O High Risk 4 1
Poor security posture.
Critical vulnerabilities
/100 present. 11C 4H 21M 5L
Wet Paper Bag
Acme corp (add your own footer text) 30f18

Security Assessment Page 4

CATASTROPHIC SECURITY BREACH DETECTED

IMMEDIATE ACTION REQUIRED - PRODUCTION ENVIRONMENT COMPROMISED

- /.env exposed with 2 secrets (1 Possible AWS Access Key ID, 1 Possible Generic Secret Key) -
immediate production takeover risk

This exposure enables complete infrastructure takeover. Attackers can access databases, cloud
accounts, payment systems, and customer data. Revenue loss, regulatory fines (GDPR/CCPA),
customer lawsuits, and permanent reputation damage are imminent.

Findings Breakdown

CRITICAL Low

11 5

This example premium report identified a total of 41 potential issues across multiple categories. The most

critical areas requiring attention are highlighted in the sections below.

Acme corp (add your own footer text) 40f18

Security Assessment Page 5

Findings Overview

Exposed Configuration Files (WITH SECRETS) 1 CRITICAL

Insecure Cookies 2 HIGH

Storage Security Issues 2 HIGH

Known Vulnerabilities (2 technologies) 5

Acme corp (add your own footer text) 50f18

Security Assessment Page 6

Detailed Findings & Remediation

Exposed Configuration Files

Business Impact

This security finding represents a risk to business operations and data security.

Financial Risk:

Potential for unauthorized access or data exposure.

A security gap that reduces overall defense posture.

What This Means

Configuration files like .env, .git/config, and cloud credentials are publicly accessible on your web server. These files

often contain database passwords, APl keys, and other sensitive credentials.

Attackers routinely scan for these files using automated tools. Once found, credentials can be used to access

databases, cloud accounts, and internal systems within minutes.

.env files are particularly dangerous as they often contain complete application configuration including all API keys,

database credentials, and secret tokens.

Potential Risks

e Complete infrastructure takeover

e Database access and data theft

e Cloud account compromise

e Ransomware deployment

e Cryptocurrency mining on your infrastructure

e Total business compromise

Acme corp (add your own footer text) 60f 18

Security Assessment Page 7

Identified Instances (1)

1. /.env
Type: Environment File | Severity: CRITICAL

CATASTROPHIC EXPOSURE

This file contains 2 exposed secrets: 1 Possible AWS Access Key ID, 1 Possible Generic Secret Key

IMMEDIATE ACTION REQUIRED: This exposure enables complete production infrastructure takeover. Attackers can access
databases, cloud accounts, payment systems, and customer data within minutes.

Impact: IMMEDIATE BUSINESS RISK: This file typically contains database passwords, APl keys, payment gateway credentials
(Stripe/PayPal), and authentication secrets. Attackers gain complete access to your infrastructure, customer data, payment
systems, and third-party services. Expected impact: complete data breach, unauthorized charges, regulatory fines (GDPR/CCPA),
customer lawsuits, and permanent reputation damage. Average breach cost: $4.45M (IBM 2023).

Remediation: Remove .env files from web root. Use server-side environment variables. Add .env to .gitignore. Block access
via .htaccess or nginx config.

Acme corp (add your own footer text) 7 0f 18

Security Assessment

Page 8

How to Fix:

Immediate Actions:

1. Block access to sensitive files immediately
2. Rotate ALL credentials found in exposed files
3. Check access logs for previous downloads

4. Audit systems for unauthorized access

Blocking Files:

Nginx:

location ~ /\. {
deny all;
}

Apache (.htaccess):

<FilesMatch "\.(env|git|htaccess|htpasswd)">
Order allow,deny

Deny from all

</FilesMatch>

Prevention:

1. Never store .env files in web root
2. Add sensitive files to .gitignore
3. Use environment variables on server

4. Regular security scans

Acme corp (add your own footer text)

80f18

Security Assessment Page 9

Code Examples:

// Nginx - Block all dot files:
location ~ /\. {

deny all;

return 404;
}

// Apache - Block sensitive files:
<FilesMatch "\.(env|config|sgl|bak|log)$">
Order allow,deny
Deny from all
</FilesMatch>

// .gitignore - Prevent accidental commits:
.env

.env.local

.env.production

* pem

* key

Acme corp (add your own footer text) 90f18

Security Assessment Page 10

Insecure Cookies

Business Impact

This security finding represents a risk to business operations and data security.

Financial Risk:

Potential for unauthorized access or data exposure.

A security gap that reduces overall defense posture.

What This Means

Cookies containing sensitive data (session tokens, authentication credentials) are missing important security flags

that protect them from theft and manipulation.

The HttpOnly flag prevents JavaScript from accessing the cookie, protecting against XSS attacks. The Secure flag

ensures cookies are only sent over HTTPS. The SameSite flag helps prevent CSRF attacks.

Missing these flags allows attackers to steal session cookies via XSS attacks, intercept them over unencrypted

connections, or use them in cross-site request forgery attacks.

Potential Risks

e Session hijacking via XSS attacks

e Cookie theft through network interception
e Cross-site request forgery (CSRF)

e Account takeover and impersonation

e Data theft and unauthorized access

e Compliance violations (PCI-DSS, GDPR)

Identified Instances (2)

1. Possible not-httponly

Acme corp (add your own footer text) 10 0f 18

Security Assessment Page 11

2. Possible not-httponly

Acme corp (add your own footer text) 11 0f 18

Security Assessment Page 12

How to Fix:

Essential Cookie Security Flags:

1. HttpOnly: Prevents JavaScript access
Set-Cookie: session=abc123; HttpOnly

2. Secure: Only send over HTTPS

Set-Cookie: session=abc123; Secure

3. SameSite: Prevent CSRF attacks

Set-Cookie: session=abc123; SameSite=Strict

Complete Example:

Set-Cookie: session=abc123; HttpOnly; Secure; SameSite=Strict; Path=/; Max-Age=3600

Implementation:

1. Audit all cookies set by your application

2. Add HttpOnly to ALL session/auth cookies
3. Add Secure flag (requires HTTPS)

4. Add SameSite=Strict or Lax

5. Set appropriate expiration

Acme corp (add your own footer text) 12 0f 18

Security Assessment

Page 13

Code Examples:

// Express.js example:
res.cookie("session’, token, {
httpOnly: true,
secure: process.env.NODE_ENV === "production",
sameSite: "strict",
maxAge: 3600000 // 1 hour
1

// PHP example:
setcookie("session”, Stoken, [
"expires” => time() + 3600,

"path" =>"/",
"secure" => true,
"httponly" => true,
"samesite" => "Strict"

D;

// Nginx header:
add_header Set-Cookie "session=Stoken; HttpOnly; Secure; SameSite=Strict";

Acme corp (add your own footer text)

13 0f 18

Security Assessment Page 14

Storage Security Issues

Business Impact

This security finding represents a risk to business operations and data security.

Financial Risk:

Potential for unauthorized access or data exposure.

A security gap that reduces overall defense posture.

What This Means

Sensitive data stored in browser localStorage or sessionStorage is vulnerable to XSS attacks. Unlike cookies with

HttpOnly flag, JavaScript storage is always accessible to scripts.

localStorage persists indefinitely and survives browser restarts, while sessionStorage lasts until the tab is closed.

Both are vulnerable if any XSS vulnerability exists on the page.

Storing authentication tokens, API keys, personal data, or other sensitive information in browser storage creates

significant security risks.

Potential Risks

e Token theft via XSS attacks
e Persistent data exposure

e Session hijacking

e Personal data leakage

e APl key exposure

e Privacy violations

Identified Instances (2)

1. Sensitive LocalStorage Item (JWT Token)

Acme corp (add your own footer text) 14 0f 18

Security Assessment Page 15

localStorage: user_token

localStorage.getitem(‘user_token'):
eyJhbGciOiJlUzITNilsInR5cCl6lkpXVCJ9.eyJzdWIiOilxMjMONTY30DkwliwibmFtZSI61kFjbWUgVXNiIcilsImIhdCI6MTU...

2. Sensitive SessionStorage Item (Sensitive Data)
sessionStorage: api_key

sessionStorage.getltem(‘api_key'):
some_session_key_123

Acme corp (add your own footer text) 150f 18

Security Assessment

Page 16

How to Fix:

Best Practices:

1. Don't store sensitive data: Never put tokens, passwords, or Pll in localStorage
2. Use httpOnly cookies: For authentication tokens when possible

3. Short-lived tokens: If you must use storage, use short expiration

4. Encrypt data: Encrypt before storing (adds complexity)

5. Implement CSP: Strong Content Security Policy prevents XSS

Migration Steps:

1. Identify sensitive data in storage
2. Move authentication to httpOnly cookies
3. Clear existing storage on login

4. Update token refresh logic

Code Examples:

// BAD - Token in localStorage:
localStorage.setltem("authToken", token);
const token = localStorage.getltem("authToken");

// GOOD - Use httpOnly cookie instead:
// Server sets cookie on login:
res.cookie("authToken", token, {

httpOnly: true,

secure: true,

sameSite: "strict"

N

// Client makes authenticated requests:
fetch("/api/data", {
credentials: "include" // Sends cookies automatically

N

// If storage is unavoidable, use sessionStorage:
sessionStorage.setltem("tempData’, data); // Cleared on tab close

Acme corp (add your own footer text)

16 of 18

Security Assessment Page 17

Known Vulnerabilities (CVESs)

The following Common Vulnerabilities and Exposures (CVEs) were identified in the software components used by
this application.

jQuery 1.8.3

CVE IDENTIFIER SEVERITY CVSS DESCRIPTION

CVE-2020-11022 6.9 In jQuery versions greater than or equal to 1.2 and before 3.5.0,
passing HTML from untrusted sources - even after sanitizing it -
to one of jQuery's ...

CVE-2020-11023 6.9 In jQuery versions greater than or equal to 1.0.3 and before 3.5.0,
passing HTML containing <option> elements from untrusted
sources - even after sani...

WordPress 5.8.2

CVE IDENTIFIER SEVERITY CVSS DESCRIPTION

CVE-2022-43497 6.1 Cross-site scripting vulnerability in WordPress versions prior to
6.0.3 allows a remote unauthenticated attacker to inject an
arbitrary script. The de...

CVE-2022-43500 6.1 Cross-site scripting vulnerability in WordPress versions prior to
6.0.3 allows a remote unauthenticated attacker to inject an
arbitrary script. The de...

CVE-2022-43504 53 Improper authentication vulnerability in WordPress versions prior
to 6.0.3 allows a remote unauthenticated attacker to obtain the
email address of the...

Acme corp (add your own footer text) 17 of 18

Security Assessment Page 18

Appendix

Technologies Detected

e Apache HTTP Server (v2.4.52) ¢ jQuery CDN
e cdnjs e Ubuntu
e core-js (v3.19.0) e WordPress (v5.8.2)
e Google Tag Manager e PHP
e jQuery (v1.8.3) e MySQL
Scan Information

Scanner Version 1.5.12

Scan Date 1/30/2026, 11:48:17 AM

Scan Duration 5.91s

Target URL http://virtualfishingcoach.com/
Disclaimer

This security assessment report is provided for informational purposes only. Automated scanning tools may produce
false positives or miss certain vulnerabilities. The information provided should be independently verified and used in
conjunction with manual security testing. ABC makes no warranties regarding the accuracy or completeness of this
report. Use of this report is at your own risk.

Acme corp (add your own footer text) 18 0of 18

